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ABSTRACT

[ 4571

The cross-sections for neutrons scattering from H, and D, has been

2 2

calculated taking into account the spin correlations, rotations, and vibra-
tions of the molecules exactly, to the extent that the vibrations are harmonic
and do not interact with the rotations. Free translations of the molecules
are assumed, but this assumption is expected to be valid in the liquid for
neutron energies above .002 ev. Numerical results are given for the total
cross-section for both ortho- and para-hydrogen gas at 20.4°K which agree
reasonably well with the limited experimental results available. Also curves
of the double differential cross-section are shown for selected incident neu-

tron energlies and scattering angles. These latter curves show very clearly

the various rotational and vibrational transitions. The formulae given here

are applicable at all temperatures below thz thermal excitation of the first
vibrational level. /?CC(ZZ"”
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I, INTRODUCTION

In recent years, liquid hydrogen has become important as a propellant

in nuclear rockets. This application necessitates g knowledge of the inter-

2

absorption of neutrons by hydrogen atoms must be predicted, and the neutron

actions of rneutrons with the H, molecule. Secondary Y -heating due to

shielding properties of liquid hydrogen must be understocod. For both of
these applications it is necessary to know how the neutrons are transported
through the liquid and thus the cross-section and distribution of neutron
scatterings from Hé molecules must be predicted.

Several Monte Carlo computer codes have been written for use in solving
propellant heating and shielding problems. Each of these codes uses a par-
ticular set of assumptions in the slow neutron energy range. For example,
one code currently in use assumes isotropic scattering from free protons
for neutron energies above .08 ev, The results in this paper show that while
this assumption is not too severe for the total cross-section, it is far
from true for the angular distribution of scattered neutrons. 1In addition,
vibrations of the Hé molecule are completely ignored in the code, but are
inclu@ed exactly in this work.

The technique of slow neutron scattering has proved most valuable as s

(1)

probe for studying molecular systems, and much work has been devoted to
the development of calculational methods and models which will adequately
describe the scattering from such systems. The Hé molecule is not only
perhaps the simplest of all but, as a liquid, hydrogen is important both as

a cold neutron source and, in special cases, as a shield. However, up to the

present, the only calculations that have been performed(2’3) are applicable



to high temperatures ( = 400°K) with high incident neutron energies
(3. 06 ev), and to low temperatures (g 30°K) with low neutron energies
(.05 ev).(u’S)

The purpose of this present paper is to derive the cross-section for
neutrons scattering from hydrogen gas in the energy range from O ev to
roughly 3 ev, and for temperatures 5_3000°K (the vibrational levels are
assumed unpopulated). The results are applicable to liquid hydrogen, with
the restriction that for incident neutron energies less than that of thermal
equilibriml(g, 002 ev) the results are not éxpected to bé accurate. Spin
correlations, rotations and vibrations are taken into account exactly, to
the extent that vibration-rotation coupling cen be neglected, and that the
vibrations are harmonic. Some numerical results are given, and these are
compared with available experimental data. It is hoped that when more
detailed experimental information is obtained, the calculation given here
will prove useful in evaluating the assumptions that enter into the theory
for more complicated molecules.

Since the only significant calculational difference between D, and Hé

2

is the effect of spin correlations, these have been evaluated, and thus we

have derived the cross-section for D, in addition to that for H2.

2



IT. GENERAL FORMULATION

In order to describe the interaction of a neutron with a molecule, the
specifically nuclear interaction is replaced by a point delta-function
interaction, with the amplitude adjusted to give the correct cross-section
for scattering from isolated and fixed nuclei. With this provision the
first Born approximation can be used to describe the scattering of neutrons
with the complete molecular system. If the position vector of a nucleus
i1s T and that of the neutron is F;, then the potential experienced by the
neutron is

v(Z,7) = (2 a/m) & (F-7)

where m is the neutron mass and a the amplitude, or in other words the
bound scattering length, which is in general spin-dependent.

If now one uses the first Born approximation:

-1(K-F

2 2 )ty o
3 -\ ]
jh.rne ° nV(rn) ti >| ’

40_ (B E
dgxde on ko

‘<¢f'

and the representation:

on 6(x) =fdt R

of the delta-function, which serves to express the energy conservation
condition in time-dependent form, the cross-section for neutrons scatter-
ing from nuclei bound in any chemical system can be found. The problem

is then reduced to a consideration of the dynamics of the scatterer.



In units where A= 1, the differential cross-section for the scattering
of neutrons from any molecular system with initial wave function ¥ 4 and

final wave function "1 13(1)

2 =2 2
d“o 1 k +1€t| -1(Ey-Ep)t l 1R 1,
qade " Zn i;é :f“ A | <ve Z’ W' | o O
n T
- 00

Here ko’ k are initial and final neutron momenta respectively, Ei , Ef are
the initial and final neutron energies, € the neutron energy transfer, %
the neutron momentum transfer, ?m and a the position vector and scattering

amplitude of the m~-th atom respectively, and the subscript T implies that a

thermal average is to be taken over the initial states.

The 1-12 molecule is dumbell-shaped with a separation a. The molecule
can then vibrate along the line joining the atoms, and rotate about the
center-point of that line. We write then for the position vector of a

hydrogen atom:

n=
?m'?z“ (-) Rz/2, nes1, 2

where ?z is the position coordinate of the molecular center-of-mass, and ﬁ’z

the relative coordinate of the two atoms of the f-th molecule. Using this

separation Eq. (1) becomes



- - P =
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2

teon $1(=) meBy/
ReXy +1(~) K- 2
< 'f|°[n° ? { 't >} (2)

First we consider the second term which refers to a single H2 molecule, and
which we refer to as the "self" term, If we make the good assumption that

the translational modes can be separated,then we can write for the "self" temm

(]

s 1 k§ } L1/ (0) 1xery(t)
ol X, X
dode " 2x k dt <y Ie 4 on 't |
of it

Vit 1

2 n - PN
{'k*fi 7n e(-) in-fy/2l*i >l 2 e+i(e- E, +Ef )t:I (3)

N=l T




where Vg is the initial wave:function’ of 'the translatibnal modes,'and
E' g Ef' are the energies of the rotational and vibrational states only.

It is well to point out here that due to the vibrations R is not constant.

2.1 Bpin Correlations

The nuclei of the H2 molecule can form states of total spin 8«0 or
B=1, the former corresponding to para- and the latter to ortho-hydrogen,
For 8«0 only states of total angular momentum J having even valuss can
occur, and for 8«1 only odd values of J are allowed. In this section we

compute the effects in Eq, (3) that are due to the nuclear spins. Call

2 . n —9.-#
g(t) {Xk'fl Z & e( ) 1x-R/2 "1?
b 4 n=l

We can write g(t) explicitly in the form

1(E.,-B.)t
s(t)"zé;%i}ﬁféz Z,( J)Xeinmt.

'; 5 Uz-tl/a J' n-o

t‘-1(191--3:)1; . ()

'ut
az-_l/ 2

e
1]
Z Z |< 313;, 8'81, o, n IA' 33,,88,,0,,0%0 >| , (5)

I 8 B,

vhich includes a thermal average over the initial states,




vhere the parameters are defined as follows:
J,J’ initial and final engular momentum of the molecule
(3, and J: are their z component)
5,8 initial and final total spin of the molecule
(sz and 8, are their =z .component)
initial and final z component of the neutron spin
E rotational energy of the state J
PJS statistical weight of the state J with spin S

@ quantum of vibrational energy

n vibrational quantum number
- ﬁ’ - -
ik.x -1 K-R
A = e 2 + a.e 2
! 2

Thus g(t) refers to the rotational, vibrational and spin dependent part of
Eq. (3). The molecular Hamiltonian has been taken to be spin independent
and as stated previously the coupling between rotations and vibrations is

neglected. Thus lJ,S,n> = |J> ' s> l n>

Since hw = .546 ev, for hydrogen all the molecules are initially in
their vibrational ground state, n=0, the higher states being frozen out
except at very high temperature (< 3000°K). The rotational energy levels

are given by
o :
E. = DI 0.015 g(3+1) ev, (6)
J LMs2 2
where M 1s the proton mass, and & the equilibriun separation distance of

the H-H bond. Now let us rewrite the operator A. We recall that the

scattering length operator of the proton has the form



- - - =
Im+ 1 +21m°0 Im-2Im~a
®m = T T O 45 Sl (7

vhere Im is the spin of the proton and a + and a_ are the triplet and

singlet scattering lengths, respectively of the neutron-proton inter-

ury

- -
action. Since I = 1/2 and I, +I, =8 ve find

-y b
[y

A = g cos + 2 a cos(ﬂ):os +
? coh - ﬁ ine 2

(8)

-~

+ 1 stn(t5R)o. (?1-?2)]

with the usual definitiona of coherent and incocherent scattering length:

2
azoh = <a> = (211'1)2 [ (1+1)a, + X a_} =
(9)
2
=3 (38, +a) |
2
2 2 2  I(x+l
B4nc © <a> - <a> '(2:“;) (a, -a)) =
(10)

31}6- (a+ - a_)2 ,

respectively.



First we shall consider tranoitionsbetween states of the same parity (and
hence with the same molecular spin §). In this case only the symmetric
part of A coniributes to the matrix elements and calling a and 8 the initial

and final states we have

| <8l =s'| -=|<I'J;n|cos(-T“-)|JJ‘n=o>| |<ozs'8;|P'9'88‘>l (12)
vhere
L - )
P=2 a<:oh+\/""§"' 8ync?’8

Now we may sum over the final spin states with the result

2 == 2
Z | < BlA'a >| -|<1'J;n|coa (%‘hb.r;:m' <°;59z|”2|"zssn > (12)

igqige
ozS 8z
The square of the hermitian operator P is

P° = P'P = ha® 4 ¥ amc(o.s) a

- - 2 - -
¢ coh 2 + 'lf' coh %ine 0.8 (13)

Summing over the neutron spin states the last term averages to sero. 8ince

<o, | (o1 o1 )| 0> = 3 1,01,
g
2

(1b)

or

-2 1-2
< a“(o.s) 0>=5x8

%
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wve get

2
2( o, SSzlP

o
zZ

2 1l 2
o, 58> = 8 [acoh + 3 %ine S(s+1) } (15)

Substituting now Eq. (12) and (15) into (5) and summing over S we obtain

for spin conserving transitions

P 2 1(E.,-E_)t
es,s.(tw{a;,% [a30h+ “tne s(su)] Z E8al
J J

(16)

-t = 2
. Zemé_ ‘Q"J; n cos(’%ﬂ)'JJz n=0 >‘
n JzJ;

L
vhere the sumz is over states of same parity as J.
Jl
For transitions between states of opposite parity (and hence of different
spin 8) only the antisymmetric part of the operator A gives a non-

vanishing contribution to the matrix elements. In this case

|< elala >|s;sv |< 33 n|sta(*5%) |33 n=0 > | ®|< o15'8;| Q0,88 >|? (17)
vith
a=La  o(TL,) (18)
\/5 inc 172

Again, summing over final spin states and considering that




one findé ~

glt) _ *s a2 [1 i s(s+1)] :E: J1(Es, Ef)t

8¢5 3 2J+1 “ine

y z Lot Z |<J Jon ain --——lJJ n=0>, (20)

vhere the sum Z 1s over states of opposite parity to J. These same results
J
can be obtained for Dy and are given in Appendix A.

2.2 Vibrations

Since all the molecules are initially in their ground vibrational state,
the vibrational transitions are important only if the incident neutron energy
is great enough so that nz/BMco 21. The neutron then cannot gain energy from

the vibrational modes.

The vibrational matrix elements can be evaluated exactly under the
assumption that the restoring force of the H-H bond is harmonic in nature.

We write R = at+x where x is the amount the bond length is stretched. On

expanding x,

X = i.(Mu))-]'/2 [b-b‘k]

where b' , b are the boson creation and annihilation operators respectively,

the matrix elements in Eqs. (16) and (20) are of the form

+ Lt slmp g (b-b")

<nle N {o>= e <n'e EVM— o>

were p = cos O, and O is the angle between % and K.



12,
Using the relation

A B _ ABIL/2 [A,B]_ ,

the above expression becomes:

t ixRu
<n|e T‘o>

]

<n lexp.i lo>

i KayL —n2u2 nub+ - Kb
it U M 1 Yo i M,

ll

t ok n l (

r_K2u2
er it ] W) '

One readily observes then that in Eq. (16)

'<J'Jz‘n l cos{g, IJJz n==o,>|2

al

52 1 -ix
(o] et o () e e oo
2
n 22 ik 2
A P @

since J' and J have the same parity. A similar expression holds if J' and J

have opposite parity, so that Eqs. (16) and (20) become
g(t) = i

2 inc s(s+1425: EE: 1(B,-E; )t
S=5' I+ )
1nak . 22
z (F—') T Z |<J'Jz'l“ exP"8‘;&n

n Jsz

(22)
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w 1(E.,- J)t

P
(4] = e L) YR |
J J! (23)
inwt 2 n 2 2 2
Yo ] Ry Il o (- g 25 10,5
n=0 Jgds

Eqs. (22) and (23) are expected to be valid for n up to a value of 5,
for above this value the H-H bond must begin to show its non-linear character,

and the harmonic epproximation should fail.

2.3 Rotations

Since E; = —%]-'-2 J (Jfl) , at liquid hydrogen temperature, kT << .0l5 and
all the molecules are in their lowest rotational state, which is J=0 for para-
hydrogen and J=1 for ortho-hydrogen. At higher temperatures however, we must

know the transition probabilyity between two arbitrary rotational states.

The wave functions for the rotational states of the linear H2 molecule
(1f we assume no rotational-vibration coupling, and that there is no hindrance

to the rotation) are just the spherical harmonics:

199, >= Y5 (08)-

We choose a coordinate system with ¥ along the z-axis. The rotational matrix

elements then are of the form:

3, -

<J'3) | u exp(- ﬁ-aﬁl"-z + 1"-3*!

= '[d:ﬂ un exp(- -gii—"-‘-g + 1 -K—;-E- Y* (O,¢) §J (0,9) (24)
Z

J'J



1k,

If now we make use of the coupling theorem(6) for the spherical harmonics,

namely:
L1+Lo 1/2
(221+1)(260+1) . . .
9, 0,d) = C(ey Lot; c(2,£,4;00) Y(O,
flmi #) fzm; 2 [ b (204+1) (htatimma) €kt )zfxﬁlag; ’
£= 4~

where the C (zlzaz;mlma) are the Clebsch-Gordan coefficients which vaenish (for ml=m2=0)
unless /) + 4> + # is even, and notice that J, must equal J_, Eq. (24) can bve
written as:

<JJ'|u exp( +1T°E)|JJ>

5 S Gy ) '
- - '+ + rp,. ' tp. .
an' Jz( ) 5: [ o (3r) C(JJ'£;3,-35') C(JJ'£;00)

2=| 33}

.[mn m |- F 1 m)y o)

2,3,-T4
thus
Z'< JJ 'Iu exp |- + i -%E) IJ J >' (2J'+1) (a5+1) ,
I I
J'+J
2
. |A—M| CE(J J'£;00) (25)

2=|J' -3\
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where we have used the closure relation for the Clebsch-Gordan coefficients:

ZC(J J't';Jz-Jz) c(g J's ;Jz-Jz) =8 g4
Jz
The An s are defined by

1 v
| n n.2 2 ix
Ay -[du u'exp ( Sy + —%)P,(u),
-1
and P‘(u) is the Legendre polynomial of order £.

Using Eq.(25), Eqs.(22) and (23) become

2 '

o a%, ‘ 1(E ,aEJ)t o

5 (2) - [acoh v —ine s(s+1)] ZPSX . I
J J'

inok 2 4% I 2 2 :
. Ze‘ T_) = lAn“ C(J J'4;00) (26)
n=o I=|J'-JI
" i(EJ,-EJ)'b
g (;) 7afm (1-§L§ﬂl)ZP£Ze (25'+1).
S
J
\imt, o .n . J'+J 2
K LY %
. Ze (m) = X IAnll c“(J J'£;00) (27)
N=0 z= J'-J'

The coefficients 02(J J'£;00) are given in Appendix B for J = 0,1,2,3,b4.
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2.4 Trenslations

For hydrogen we assume that the moleculer translations are free.

Using femiliar results ,(S) the translational part of Eq. 3 becomes
e Il - — t,‘e
-ix.x, (0) 1ix-r, (t) - (L +£T)
f/ £ M
<y e e = e , (28)
it it>T

where the temperature T is measured in electron-volts.

The above approximation is likely to be a very good one for gaseous
hydrogen, but for neutron scattering in liquid hydrogen, this approximation
will generally be invelid if the initial neutron energy is below the liquid
hydrogen themal energy.
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ITI. SCATTERING CROSS-SECTIONS

By using Egs.(26),(27) and (28) in Eq.(3), and performing the indicated
integration over t, the "self" scattering cross-section per molecule from
para-hydrogen becomes:

dao 1 2 2
____ - _— x P a -
e oV Zt af (Wi 7 |%
ra =0,2,b’,- . J'-O,a,h’oo
p 2 2T J'+J
. ! - L X 2 19, 2
(27'+1) exp {-(€+AE + hM) /(—ﬁ- Z C(TJ z,oo)|An£|
=1J'-J1
J'h]
2 ' K 2 ' 2
+a (2'41) exp (- (e+8E + ) / c2(3 J “OO)IAnzl
J'=1,3,5,. L=)J"-J|
vhere A E = EJ,-EJ+nw, and for ortho-hydrogen (29)
dad P
| Vo ZH (i z 7 M Z
Js1,3,5,
ortho 3 5 Jo.o’a h'..
2 J'H .
na nal‘ 2 2
*(23'+1) exp (- (e+AE + 1) /(—ﬂ- C=(J J'z;OO)IAMI
' L=1J'-J|

22 2T J'+J 5
+ (3&5 + 2af) Z } (27'+1) exp (- (e+ AE + I"m)/(_"_ﬁ_ Z CZ(J J";OO)IAM'
} J'=l1,3,5,.. l L=1J'-JI
| (30)




18.".

Eqs. (29) and (30) have some special cases of interest. If the initial
neutron energy is sufficiently less than 0.546 ev so that we satisfy the
condition

n2ﬂ3Md) <1

for all scattering angles, then the vibrations need not be considered, and
1

iKaE
A = duy e

(+Y ]

where Jy is the spherical Bessel function of orderf . Thus in this limit,
Eqs. (29) and (30) become

P, (w) =215, (5,

2
dos

[ ' 22 2
K M 2 x k°T\\
dnde - b ko Vo2t E Py |% E (23 +1)exp (-(e+AE +m)/( W

para J=0,2,k,.. J'=0,2,4,,.

Ie 2 | 2 K2 2 naT
- 4 15 c2(3 3'4;00) + "1}: (2341 )exp -(e-I-AE"'m)/(T) .

£=1J'-J| J'=1,3,5,..
J'+J 5 .
: Z 3, 52} ¢ 3 5;00) | o (3)

£= ' -dl
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. ) | e
"5 Vo Z PJ[ai,Z ‘”*”W{**AE*%V(?)'

Ol‘bho J=l,3,5,o- - 2 h,.-

JHJ' o o K2 2 ,3']_‘
. Ji (522’ 02(J J'2;00), + (313.c + 2&1)2 (27'+1) exp {-(€+AE + Eﬁ) / (T .
L=]3' -J J'=1,3,5,..
J+J' :
Z Ji(-é—a) c2(g J'z;oo)] (32)

4=} 3-3'}

Another special case is that of liquid hydrogen, where the molecules are in
their ground rotational as well as vibrational states. Here we find:

] e Y H

2
+

An,J'

[‘i Z (eJ'a1) exp{-(c-o-!‘r,-r - E;)al(Li}-)>

J'=0,2,h, .. (33)

22 2
+ afz (27'41) exp -(u-lJ,o- ne - ﬁﬁ) [(é)} lAn’Jt‘ ] )

J'-1)3)5)oo
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and for ortho-hydrogen,

d o
dnd: V ZBT (E"J) :
ortho
(34)
22, 2 2 2
ai }: exp ( -(e+E v<E; + no - "E—M) /(-’5—;— (J'4-l)’An’J,+1 +J lA"»J"‘lI )+
J'=0,2,k, .,
+(3a§+2ai)2 { (e+E -E +Nw - r) /( ) ((J +1)l i O ‘ e |An,J'-lr

J'=1,3,5,..

Actually no specifically liquid effects have been included in Eqs. (33) and (34),
but as indicated earlier, these are expected to be of importance only for

extremely low energy neutrons (E,<.002 ev).

The integrals Anz can all be evaluated by recursion from the single inte-

gral A,,, and these recursion relations are given in Appendix C.

At room temperature one might ask if the inclusion of spin correlations
is important. The answer seems to be affirmative, since, as an investigation
of PJ readily shows, at this temperature only the rotational states J=0,1,2,3

are present in any epprecieble amount.

The cross-section for scattering from an ortho-para mixture 1s given by

2 2 2
d o5 _ Noara d og + Northo d"0g

p. )
dode Npa.raf‘lqortho dide pars, Npa.ra+Northo dode ortho




where N and N

para

respectively. ForkT >>.015, N

(.0258 ev), Np

ortho

ara./ Northo

2i.

are the number densities of para and ortho molecules

para/Northo = 1/3, end at room temperature

= 1/2.91.
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Iv. INTERFERENCE EFFECTS

So far our calculations have been for the "self" scattering, ie., refer-
ring to a single H2 molecule; and for gaseous hydrogen the influence of the
interference of neutron waves scattered from different molecules will be very
small. For liquid hydrogen however, interference effects might be of import-
ance for very low neutron energies where para— para transitions are the only
competition,ie, for neutron energies below .0l5 volts. Even for these low
energies, the para— para cross-section will dominate. Interference effects
for liquid hydrogen in terms of the translational correlation function for
neutron energies below the first vibrational level were calculated by Sa.rma.(h) ’

but for completeness we quote the formula here with the inclusion of the

vibrations:
o, . & fx.7,(0) 1n.ry(t)
int % X +et -ix.T,l0 ‘T 4
Wde "Wk [ Z‘ 14 SRR [t
- £ (34)

1l n2 2 .2
au cos(-“-?) ;BT{%)_ .

For a free gas the translational correlation function

e ra(0) +HnaTy(t)
Z‘ vee | o e K ¥4 >p
JaL

vanishes.
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V. NUMERICAL RESULTS AND DISCUSSION

Equatione (29) and (30) have been programmed for computation on the IBM
704k, In particular, Figure (1) shows the total cross-section (per atom) for
scattering from both ortho-and para-hydrogen gas at 20.4°K for initial neutron
energies up to 1 ev. Notice that the para-hydrogen cross-section rises rapidly
as Eo approaches .022 ev, which is just the energy the neutron needs in the
laboratory frame to cause the rotational transition J = 0 - J = 1, from para-
to ortho-hydrogen. Also shown in Figure (1) are some experimental points by
G. Squires and A. Stewart(7). In Figures (2) through (5) we show the computed
double differential cross section %;gﬁ for two different initial energies
and scattering angles. For E° = 1.0 ev and @ = 320 one can clearly recognize
the structure due to the rotational transitions superimposed on the zero and
one phonon contributions to the cross section. The structure is more pronounced
for para- than for ortho-hydrogen, since in the case of para-hydrogen only the odd
rotational levels make a significant contribution, whereas all levels contri-
bute to the ortho cross-section. The even levels in ortho-hydrogen contribute
roughly twice as much as the odd levels as seen in Eq. (30). At a scattering
angle of 55° the structure due to the rotational transitions is still present
but appears somewhat smoothed out becausé‘of the larger recoil energy. The
same comments apply to the curves corresponding to Eo = 0.22, although here
oﬁly the zero phonon term can contribute to the cross-sections.

In ;ummary then, the results given in this report predict the scattering
croéé-sections from Hé'and D2 for incident neutron energies up to roughly
3fev and all practicgl temperatures. For neutron energies above a few

volts the calculated total cross-sections for both ortho- and para-hydrogen



2k,

tend to the free atom limit as they should, and for low neutron energies,

so that only the first rotational transition occurs, the results are iden-
tical to those of Sarma.(h) The calculated total cross-section agrees
reasonably well with the available experimental data, and as the experimental
errors decrease with increasing neutron energy so does the agreement between
theory and experiment improve. Since the differential cross-sections are

far more sensitive to the details of the model then the total cross-section,

it 1s hoped that differential experiments planned and in progresée) for
various ranges of neutron energy will allow a rigorous test of the theory.
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APPENDIX A

D2 Molecule

Aside from the trivial difference in masses, the only difference between
the H, and the D2 molecule lies in the spin correlation. 1In this appendix we
calculate the cross-sections for the scattering of neutrons from D, by evalu-
ating the effect of the spin correlations, and using the H2 results already

obtained for the vibrations, rotations and transletions.

For D, we find (with the same notation as in section II)

i?OR -{T{-R
2 2
A= & e + a,e
-)-ﬁ» - g
= Peos [2=] + 14qsin|Z2=] (A-1)
2 2
where
- -
P= (28.coh +\/2 8.5 0), (A-2)
- - L d
Q= 2 a0 0 (I -1 (A-3)
. =
and S = Il + 12 is the total spin of the molecule. Since the deuteron has

spin one, the symmetric ("ortho") nuclear spin eigenfunctions of the D, mole-
cule are those of spin 0 and 2, and these correspond to even values of J.

The antisymmetric ("para") states have spin 1 and odd J values. It can
readily be shown that the total spih operator S has nonzero matrix elements

2
only between states of the same total B(8 = S(S+l)) and that the operator Q



3
has nonzero matrix elements only between states of total S differing by 1.

It follows from this, and also from the conservation of spin angular momentum

+ .
(A8 = 'ol ), that the transitions S = 0Oe—>»S = 2 cannot occur.

Using the Egs. (11), (12), (14), (A-1) we find in this case

+ 1(Eg, -E;)t inot

. P
1 2 2 Js
g(t) =3 [8&. + S(8+1)a ] e e
g=§' 2 coh ine Zmﬂ Z Z

J J' n=
Z I <J'Jz',n| cos
z Iz

where Z implies that J' and J have the same parity, and for J', J both
J

2

H

K
* 2f) | J Jz, n=o >
J
1
even S is O or 2, while for J', J both odd S is 1.
Similarly, Egs. (17), (19) and (A-3) result in
, 1(E ,-EJ)t inwt

(t), . = tne @ - sen)) 5B :
eltd =2 B- i), ° e
J

J! n

2

|
‘ . Z |<J'J; R nl sin

x. R
L) = >
2_) |J Jz, n=0
I,

where & implies that J' and J have opposite parity, and for J even, S is

O or 2, while for J odd, S is 1.
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The above results now give, in complete analogy with the way Eqs. (29)

and (30) were obtained, the "self" cross-section for ortho-deuterium:

2 n
d °s| . ok /M Z L |2 Pr| (a2 +8a2 )
dode! ..o k, AKST n! Ede coh inc
n J=0,2,4.,
J'+J
1 'g 2 K2T 2 Vg . 2
-Z (2J+l) exp<"(€+AE+rm) /(ﬁ—d-.- Z C (JJz,OO)IAnz|
J'=0,2,l g=]J%J]

J'+J
3 a2 (27'+1) e (e+ AE+ > )2/(-"—23) 33 J'z-oo)lA |2
*88 inc xP4- T/ 997 Ay
J'=1,3,5,.. £=|J'-J|
(A1)
and for para-deuterium we find:
2 2,1
d0g| _ k -~/ M 1 K P 2 .
dod e TIK KAl nl EMd(D J |3 ine (257+1)
para n J=1,3,5,.. J'=0,2,k,.
> ” J'+J
2 2
K KT\, 2 .
. exp{-(e+ AE+m)/ (—ME) Z C (JJE,OO)lAnzl
£=13"' -J}

J'+J

22 2 o
+(l+a,2coh+ aeinc)z (23'+1) exp (-(e+ AE+ Il-_'-‘M-E) /(-r'i-g- Z c(JJ Z;OO)IAnz

J'=1,3,5,. p=1J"-J1
(A-5)

2]
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where Md is the deuteron mass. The energy levels for D2 are given by:

g o B2 a(ga) J+1)

_ J
g = ———pt = .00T7L

ev.
2
LM 58

and thus for low temperatures (<5 .02 ev) spin correlations will be important

for deuterium.




APPENDIX B

Here the values of the Clebsch-Gordon coefficients 02(J J'2;00) are
given for J = 0,1,2;3. The analytic expression for C(J J'£;00) is given in
reference (6). TFor simplicity in notation we define the quantity (J J'I 4)

so that

(3 3')2) = (23'+1) c2(J J'£;00).

The results are:

J=0
(0J'1e) =27+ 1,
J=1
LI JI'+1) =J'+1, (QJI13'-1) = J
J=2
- _ 3 (3'+2)(3'+1) "o J'(J'+l)§2J'+l)
(2J|J+2)"'§ z]."+3 ) (2J'J)= 2Jl+3 2J‘-l )
W oy - 33(3'-1)
(2113°-2) = 3 =351
\
| °n3 ( (3'+1) (
0 ograey o 5 (T'+3)(3'+2)(I'+1 N W CAR-) IO AR DN
(37°13°+3) = 2'7?5%}"(‘2%?? » (33'13'41) = 5 5ty (a1
0o 3 (I'+1)J' (I'-1) Wt ey _ 5 IN(I'-1)(3'-2)
(y'J‘l)zﬁém}(3J|J'3)—'é 2J-l 2,]"..3
J=14 '

|
1oy 35 (I'+4)(I'+3)(T'+2)(J"+1)
! (hJ I J +h) = -8- 2J'+7 2J'+5 2J'+3 J

"o 5 (J'+3)(3'+2)(J'+1)J"
(13+2) = 3 TR -

Ny =2 (2J'+l)(J'+2)§J'+12(J'-l)J'
(h'13') = 2T +5) (20 +3)(29 ' -1)(23'-3) ’

"o 5 (J'+1)3'(J'-1)(J'-2)
(1 -2) = 3 T3yt 59 -

" 3 35 J' (3'-1)(3'-2) (3" -3
('13'-4) - B TS
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APPENDIX C

Recursion relations useful in evaluating theAn Ya vhich are defined
).
by Eq. (27), are presented here. First the recursion relations of interest

here for the l:((u) are:

(2f+1)u Bfu) = (£+1) Bpaa(n) + £ 7, (n), (a-1)
- P - Pt . -2
(24+1) r:‘,(%;) f’(ﬂ(u) B (n) (A-2)
We put a superscript (+) on c, { if {18 even, and a (-) for odd,( Therefore
1 Ma
C((’:} -[du Pl(u) cos(op) e = A0,£(+) (A-3)
-1
. a2 |
C(()'% -[du Pl(“) sin(a u) e =-1A°’£(') (A-b)
-1

"vhere a = xa/2, A = x>/8Mw, By using (A-1) and (A-2):

c(()-i = = (1/A) e sin a + (a/2n)

c
, 0,0

(+) -\ (+) -
Co,2 = = (3/2n)e  cos a H(3/20)-2)C, o/2 - (3a/bA) Cp 4




Cof;iz = 5;\-(-;{—;’-}-@?_-1—7 [(2(-1)(2!2+3)+2x] Co,é”* %%)-‘3 (COA(’:I'CO,L: .
{%%__3 0(22 , d-2,8,. (A-5)

c flla éﬂf’%lam'y [(21‘1)(21"3)*2"J Cofje)' 2§X++2 :21‘ 0(21
é%-%ﬁ)cox 2, A= 1,3,5,...

The recursion relation for n § O is given simply by

() 1 (%) (+)
Cn, L " ':‘5-{_1' Ch-1, 00" ééf Cn-1,4-1

Ve see then that the only integral that need be computed directly is C

(+)
0,0’
all the rest following from recursion relations,




SR TR I T

sl

ny

Ql

Js

J

coh

ainc

1IST OF SYMBOLS

initial wave function

final wave function

initial neutron momentum

final neutron momentum

neutron energy transfer

neutron momentum transfer

initial neutron energy

final neutron energy

position vector of m-th atom

bound scattering length of m-th atom
relative coordinate of two atoms in same molecule
position coordinate of molecular centre-of-mass
cross-section

solid angle

molecular spin

orbital angular momentum of molecule
neutron spin vector

statistical weight of state J with spin S.
guantum of vibrational-energy

vibrational quantum number

rotational energy of state J

coherent scattering amplitude

incoherent scattering amplitude

nuclear spin

triplet scattering length

singlet scattering length
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o = Hi

© o

)

Y(6,%)
J Jz

a
C(z,l.el,;m,m

6
Jz'Jz

P,(u)

T

o)

total nuclear spin

mass of hydrogen atom

annihilation operator for vibrations
creation operator for vibrations
angle between vectors K and ¥

cos ©

spherical harmonic

equilibrium separation between atoms in H2 molecule
Clebsch-Gordon coefficient

Kronecker-delta

legendre polynomial of order £

temperature
EJ, - EJ + nw

spherical Bessel function of order £

mass of deuterium atom.
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